ESCUELA SUPERIOR DE ADMINISTRACIÓN PÚBLICA ESAP
ESTUDIANTES DE III. SEMESTRE CETAP CALDONO
Profesor: Fabián Orozco Méndez
Tutor.
Estadística aplicada
|
Práctica 1: INTRODUCCIÓN AL USO DE SOFTWARE ESTADÍSTICO
OBJETIVO: Los estudiantes deberán conocer el funcionamiento de la Hoja de Cálculo EXCEL y utilizarla para realizar estudios estadísticos, tanto de una como de dos variables, y de probabilidad, como los siguientes:
1. Obtener representaciones gráficas según el tipo de variable
2. Hacer los cálculos necesarios para obtener los distintos estadísticos (media, mediana, moda, cuantiles, varianzas, etc.). A partir de unos datos (o de una distribución de frecuencias) hacemos los cálculos necesarios para desarrollar una fórmula y paso a paso calcular hasta obtener el resultado final. (Sumas, productos, divisiones, potencias, raíces, etc.)
3. Obtener fácilmente estadísticos como promedios, varianzas, cuartiles, covarianzas, regresión, etc., aplicando una lista de funciones previamente programadas en la hoja de cálculo. (Insertar + funciones o el símbolo fx de los botones de las barras de herramientas). (Ver listado de funciones y argumentos que requieren)
4. Utilizar en el menú de Herramientas la opción Analizar Datos para analizar un conjunto de información. Permite describir un conjunto de información correspondiente a una o varias variables. Los datos de entrada son con frecuencia unitaria (si un valor se repite varias veces aparece repetido ese número de veces). También permite aplicar técnicas estadísticas más sofisticadas (regresión, contrastes de hipótesis, estimación por intervalos, etc.).
INTRODUCCIÓN EN LA HOJA DE CÁLCULO EXCEL
El programa Excel es un programa muy difundido y conocido ampliamente. Dado que se trata de un programa del paquete Microsoft Office, su utilización es muy similar a cualquier otro del mismo, y quien no maneja Microsoft Word hoy en día. Un clic de ratón para seleccionar, un doble clic para accionar, el uso de teclado (flechas para desplazarse, enter para accionar, etc.) o la utilización de la Ayuda del programa son recursos que guardan similitud con cualquier otro software del Entorno de Windows.
La hoja de cálculo, a pesar de su manejo sencillo, constituye una herramienta muy potente de cálculo estadístico. Como su nombre indica, la hoja de cálculo nos permite calcular, hacer operaciones matemáticas, lógicas, estadísticas, financieras, etc.
Excel es una hoja de calculo que facilita los cálculos y la obtención de indicadores y estadísticos para estudiar el comportamiento de una o varias variables. Una hoja de cálculo se podría entender como una matriz de filas y columnas, donde cada combinación de fila y columna se denomina celda, por ejemplo la celda A1, B5, C15, etc.
Un conjunto de celdas se denomina rango, y en Excel se expresa como A1:C5. En cada celda se puede contener: número, fórmula, texto, fecha...
Con la hoja de cálculo EXCEL se pueden obtener fácilmente estadísticos y medidas que resuman y caractericen una variable, una distribución de frecuencias, o una distribución bidimensional (n-dimensional) de frecuencias, es decir varias variables conjuntamente.
El fichero de Excel es el Libro (análogo a lo que es el documento en Word) y su extensión habitual será .xls (de igual forma que es .doc para Word). Cada libro puede contener un número ilimitado de hojas de cálculo.
Un primer recorrido por la hoja de cálculo nos permite conocer las:
- opciones de menú
- barra de herramientas
- barra de estado
Manejo de Excel
Para introducir un dato numérico o textual en cada celda, se hace clic en la celda y se escribe.
Introducir fórmulas
Algunas de las operaciones matemáticas que puede hacer son:
Suma = ..+..
División =.. /..
Elevar al cuadrado =..^2
Elevar a potencia n =..^n
Raíz =raiz(..)
Calcular valor absoluto =abs(..)
Calcular raíz n-esima=... ^(1/n)
Calcular logaritmos =LN(..)
Etc.
Para introducir una fórmula en una celda, se hace clic en ella, se escribe el signo de igualdad (=) y, a continuación, la fórmula.
La mecánica es similar al procedimiento que utilizamos para resolver problemas de estadística utilizando una calculadora. Es importante disponer de manera clara y ordenada los cálculos. Esto facilita su posterior uso e incluso la revisión de los procedimientos si se detectan errores.
Como ya se ha indicado, una celda puede contener un número o una fórmula.
Para crear una fórmula empezamos tecleando en una celda, por ejemplo la C1, el símbolo “=”, y la operación que deseamos realizar. Puede ser un simple cálculo matemático: =3+5, y nos da un resultado 8. Pero puede ser una fórmula =A1+B1. Si en la celda A1 hay un 3 y en la B1 un 5, aparecerá el mismo resultado 8, sin embargo ya no es un número, sino una fórmula. Esto tiene dos implicaciones importantes:
1.- Si cambian los valores de las celdas A1 y B1, cambia el resultado en C1 obteniendo la suma de los nuevos números.
2.- Cuando copiamos la celda C1 a otra celda, no copiamos el valor, sino la fórmula.
En algunas ocasiones nos interesa que la referencia de una celda no se modifique cuando se copie la fórmula que la contiene. Podemos indicarle en la fórmula que mantenga fijo la fila, la columna o ambas. Para ello deberemos anteponer el símbolo $ antes de la letra (columna), o antes del número (fila) o antes de las dos (fila y columna, es decir celda) de la identificación de la celda.
Este tipo de referencias que se mantienen constantes al copiar la fórmula se denominan referencias absolutas a celdas o celdas absolutas. Ejemplo : $C$26 es una referencia absoluta, mientras C26 es una referencia relativa.
Sumar un rango de valores con la auto suma (=suma(..), ó símbolo Σ)
Con ello se puede calcular: Fi, fi, Ni, N, xini, Sxy, rxy, etc que son estadísticos que utilizaremos en los siguientes temas.
Seleccionar:
a) Una celda: se hace clic en ella.
b) Una fila: se hace clic en el número de cabecera.
c) Varias filas seguidas : se hace clic en la primera y se arrastra hasta la última (también se puede hacer al revés).
d) Una columna: se hace clic en la letra de la cabecera.
e) Varias columnas: se hace clic en la primera y se arrastra hasta la última (también se puede hacer al revés).
f) Un rango: se hace clic en la celda de uno de los vértices y se arrastra hasta la celda de la esquina opuesta.
Insertar hojas:
Para insertar una hoja nueva, se elige en la barra de menús Insertar /Hoja de cálculo
Mover hojas
Para mover una hoja, se selecciona en la parte inferior, en la barra de hojas del libro, y se arrastra al lugar correspondiente.
ACTIVIDAD 1: Se ha preguntado a 40 Estudiantes de III. Semestre de APT sobre el número de libros leídos en el último mes y se han obtenido los siguientes resultados:
1, 1, 2, 1, 1, 2, 1, 4, 2, 2, 1, 2, 1, 1, 0, 3, 1, 2, 1, 1
2, 3, 2, 3, 0, 1, 1, 1, 2, 4, 1, 2, 2, 3, 3, 0, 2, 3, 4, 4
1. Abre la Hoja de Cálculo Excel.
2. Introduce todos los valores en el rango A4:H8
3. Sume las Columnas y Filas
4. Sume los pares y divídalo entre la suma de los impares
5. Reste la suma de los impares a la suma de los pares
3. Sume las Columnas y Filas
4. Sume los pares y divídalo entre la suma de los impares
5. Reste la suma de los impares a la suma de los pares
CÁLCULOS EN EXCEL APLICANDO FUNCIONES.
Para poder aplicar funciones fx las frecuencias han de ser unitarias.
En el menú insertar, seleccionar la opción función, después la categoría de Estadísticas y dentro de ellas la que interese.
Una vez introducidos los datos, utilizaremos las funciones que Excel nos proporciona. Por ejemplo, la función =SUMA(Rango) o =PROMEDIO(Rango) calculan respectivamente la suma y el promedio de una muestra.
La función promedio, permite calcular la media aritmética. Aparece en la parte inferior del cuadro de diálogo una breve descripción de la función, y permite solicitar más información sobre ella en Ayuda sobre esta función.
En este caso los argumentos de la función, lo que habría que rellenar en el cuadro de diálogo es el conjunto de celdas en los que se encuentras los valores de la variable.
En Número1 habrá que indicarle el rango de celdas, por ejemplo A4:H8, o pinchando en el recuadro que hay a la derecha, marcar con el ratón dichas celdas.
Usando las funciones podremos calcular: máximo y mínimo valor, recuento de frecuencias, promedios, cuantiles, mediana, moda, media armónica, geométrica, media recortada, varianza y desviación típica, medidas de forma, etc. También podemos calcular algunos estadísticos bidimensionales: covarianza, correlación, estimación lineal, estimación logarítmica, tendencia, pronóstico, etc. que estudiaremos en los siguientes temas de la asignatura.
FUNCIONES ESTADÍSTICAS Y SU CORRESPONDENCIA CON LOS ESTADÍSTICOS QUE SE EXPLICARÁN EN TEORÍA.
COEF.DE.CORREL (r).
Dar rango de valores de las variables X e Y.
COEFICIENTE.ASIMETRIA (g1).
Rango de valores de la variable.
COEFICIENTE.R2 (r2)
Dar rango de valores de las variables X e Y.
CONTAR
Rango de valores de la variable. Cuenta el número de valores.
CONTAR.SI
Especificar rango de valores de la variable y criterio. Por ejemplo número de veces que una variable se repite el 3. El criterio puede ser un número o una celda de la hoja de cálculo.
COVAR (Sxy)
Dar rango de valores de las variables X e Y.
CUARTIL (Q1,Q2,Q3)
Hay que indicar el Rango de valores de la variable, y el número del cuartil que se busca: 1,2,3.
CURTOSIS (g2)
Rango de valores de la variable.
DESVESTP (Sx)
Rango de valores de la variable.
DESVIA2
(Media de desviaciones respecto a la media al cuadrado) Rango de valores de la variable.
DESVPROM
(Media de valores absolutos de desviaciones respecto a la media al cuadrado). Rango de valores de la variable.
s teclas Control+Shift+Intro.
MAX
(Valor máximo) Rango de valores de la variable.
MEDIA.ACOTADA
(Media de valores centrales) El argumento Matriz, es el rango de valores de la variable. El argumento porcentaje es el % de valores que se excluyen. Si se pone 0,1 calcula la media aritmética del 90% de valores centrales. (quitando el 5% más altos y el 5% más bajos).
MEDIA.ARMO
(Media armónica) Rango de valores de la variable.
MEDIA.GEOM
(Media geométrica) Rango de valores de la variable.
MEDIANA
Rango de valores de la variable.
MIN
(Mínimo valor) Rango de valores de la variable.
MODA
Rango de valores de la variable.
NORMALIZACION
(Calcula valores tipificados). Habrá que darle como argumentos el valor de la variable y su correspondiente media y desviación típica.
PERCENTIL
Los argumentos son: Matriz, que es el rango de valores de la variable, y K que es el percentil que se busca. Si se desea el percentil 10, K valdrá 0,1. Si se desea el percentil 90, K vale 0,9.
PROMEDIO
(Media aritmética) Rango de valores de la variable.
PRONOSTICO
(Predicción a partir de la recta de regresión). Suponiendo que se conoce el valor de X, qué valor tomará Y según la recta de regresión. Los argumentos son: X que es el valor que toma la variable independiente, Conocido_X, que es el rango de valores de la variable X, y Conocido_Y, que es el rango de valores de la variable Y.
VARP
(Varianza) Rango de valores de la variable.